Der Ausbau Erneuerbarer Energien ist ein integraler Bestandteil der internationalen Klimaschutzpolitik. Die Einbindung der Erneuerbaren Energien in die bestehenden Versorgungsstrukturen ist eine große Herausforderung, da die Gesamtkomplexität des Energiesystems rasant ansteigt.
Die naturgemäß auftauchenden Schwankungen bei Wind- und Solarenergie müssen durch eine flexible Regelung anderer Erzeuger oder Verbraucher sowie durch einen gezielten Einsatz von Speichertechnologien kompensiert werden.
Neben den notwendigen energietechnischen Anpassungen müssen neue Methoden entwickelt werden, um das Energiesystem besser zu planen.
Qantic hat einen Algorithmus auf der Basis innovativer Verfahren im Bereich der Künstlichen Intelligenz (KI) entwickelt. Dieser ist auf die Besonderheiten der Optimierungsaufgaben im Energiebereich zugeschnitten, um Vorschläge für die optimale Auslegung von Energiesystemen zu ermitteln. Wesentliche Bestandteile sind:
Ein auf die Planung von Energiesystemen spezialisierter „Agent“, der zur Entscheidungsunterstützung über ein tiefes künstliches neuronales Netz verfügt (Deep Learning).
Ein spezielles Lernverfahren, um den Agenten für komplexe Planungsaufgaben im Energiebereich zu trainieren und somit Erzeugung, Speicherung und Verbrauch besser aufeinander abzustimmen.
Eine technisch detaillierte und flexibel erweiterbare Simulationsumgebung für Energiesysteme, in welcher der Agent trainiert werden kann und sein künstliches neuronales Netz selbstlernend anpasst.
Unser Softwareprodukt Q-System ermöglicht die Modellierung und Bewertung komplexer energietechnischer Systeme. Hierbei werden die physikalischen Eigenschaften der eingesetzten Technologien detailliert abgebildet (z. B. Windkraftanlagen, Photovoltaik, Batteriespeicher, konventionelle Erzeuger, KWK). Der Algorithmus ermittelt die bestmöglichen Betriebspunkte aller Komponenten, um das Energiesystem unter Berücksichtigung der spezifischen Restriktionen zu steuern.
Hierzu wird insbesondere der Einsatz von Speichern, konventionellen Energieerzeugern und sonstigen Flexibilitäten koordiniert. Ein höherer Anteil erneuerbarer Energien wird hierdurch nutzbar, die Anlagen werden mit einem besseren Wirkungsgrad betrieben und es fällt ein geringerer Verschleiß und Wartungsaufwand an. Q-System hält zudem die nötigen Reserven zur Kompensation von Netzschwankungen und ungeplanten Komponentenausfällen in kostenoptimaler Weise vor.
Unter Berücksichtigung aller projektbezogenen Anforderungen kann Q-System das jeweils bestmögliche Energiesystem aus einer Vielzahl alternativer Konfigurationen ermitteln und Komponenten optimal dimensionieren. Das Produkt eignet sich somit besonders für die Planung von Microgrids sowie dezentraler Erzeugungslösungen und Eigenversorgungskonzepte im Industrie und Gewerbebereich. Q-System ist flexibel erweiterbar und kann kundenspezifische Besonderheiten differenziert einbeziehen.
Q-System unterstützt Sie mit folgenden Features bei der Planung und Bewertung Ihrer Energiesysteme:
Durch den Einsatz von KI bei Planung von Energiesystemen lassen sich Kosten- und Emissionsreduktionen bis zu 30% im Vergleich zur Optimierung auf der Basis heute verbreiteter Lösungen erzielen. Unser KI-basierter Algorithmus zeichnet sich dadurch aus, dass er folgende Eigenschaften miteinander verbindet.
Der Algorithmus ist für eine hohe Systemkomplexität geeignet, die typischerweise bei der Zusammenführung vieler unterschiedlicher Erzeugungsanlagen in dezentralen Energieversorgungskonzepten auftritt. Im Vergleich zu konventionellen Methoden ist eine detailreichere Abbildung möglich, weshalb die Potentiale aller Komponenten voll ausgenutzt werden können.
Große Datenmengen und hochaufgelöste Echtzeitinformationen können in die Optimierung einbezogen werden. Hierdurch ist es dem Algorithmus möglich, selbstlernend die relevanten Muster aus den Daten zu extrahieren und Vorhersagen abzuleiten. Q-System kann daher die Schwankungen bei der Verfügbarkeit von Wind und Sonne besonders vorausschauend berücksichtigen.
Parallel zum Ausbau Erneuerbarer Energien wird das Energiesystem zunehmend von Dezentralität und Digitalisierung geprägt. Hieraus entwickeln sich neue Geschäftsmodelle und Versorgungskonzepte. Neben Anwendungen im Bereich der konventionellen Energieerzeugung eigenen sich unsere Produkte besonders für die Geschäftsfelder der neuen Energiewelt: